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Introduction 

 

Pincer Search Algorithm was proposed by, Dao-I Lin & Zvi M. Kedem of 

New York University in 1997. This algorithm uses both, the top-down and 

bottom-up approaches to Association Rule mining. It is a slight modification 

to Original Apriori Algorithm by R. Aggarwal & Srikant. In this the main 

search direction is bottom-up (same as Apriori) except that it conducts 

simultaneously a restricted top-down search, which basically is used to 

maintain another data structure called Maximum Frequent Candidate Set 

(MFCS). As output it produces the Maximum Frequent Set i.e. the set 

containing all maximal frequent itemsets, which therefore specifies 

immediately all frequent itemsets. The algorithm specializes in dealing with 

maximal frequent itemsets of large length. The authors got their inspiration 

from the notion of version space in Mitchell’s machine learning paper. 

 

Concepts used: 

 

Let I = (i1, i2, , im) be a set of m distinct items. 

 

Transaction: A transaction T is defined as any subset of items in I. 

 

Database: A database D is a set of transactions. 

 

Itemset: A set of items is called an Itemset. 

 

Length of Itemset: is the number of items in the itemset. Itemsets of length 

‘k’ are referred to as k-itemsets. 

 

Support Count: It is the total frequency of appearance of a particular 

pattern in a database.  

In other terms: If T is a transaction in database D and X is an itemset then T 

is said to support X, if X  T, hence support of X is the fraction of 

transactions that support X. 

 



Frequent Itemset: An itemset whose support count is greater than or equal 

to the minimum support threshold specified by the user. 

 

Infrequent Itemset: An itemset which is not frequent is infrequent. 

 

Downward Closure Property (Basis for Top-down Search): states that “If 

an itemset is frequent then all its subsets must be frequent.” 

 

Upward Closure Property (Basis for Bottom-up Search): states that “If an 

itemset is infrequent then all its supersets must be infrequent.” 

 

Maximal Frequent Set: it is a set, which is frequent and so are all its proper 

subsets. All its proper supersets are infrequent. 

 

Maximum Frequent Set: is the set of all Maximal Frequent sets. 

 

Association Rule: is the rule of the form R : X  Y, where X and Y are two 

non-empty and non-intersecting itemsets. Support for rule R is defined as 

support of X Y. Confidence is defined as Support of X Y / Support of X. 

 

Interesting Association Rule: An association rule is said to be interesting if 

its support and confidence measures are equal to or greater than minimum 

support and confidence thresholds (specified by user) respectively. 

 

Candidate Itemsets: It is a set of itemsets, which are to be tested to 

determine whether they are frequent or infrequent. 

 

Maximum Frequent Candidate Set (MFCS): is a minimum cardinality set 

of itemsets such that the union of all the subsets of elements contains all 

frequent itemsets but does not contain any infrequent itemset, i.e. it is a 

minimum cardinality set satisfying the conditions: 

 

   FREQUENT  { 2X | X  MFCS} 

        INFREQUENT  { 2X | X  MFCS}  

 

Where FREQUENT and INFREQUENT, stand respectively for all frequent 

and infrequent items (classified as such as far). 

 

 

 



Pincer-Search Method 

 

Pincer Search combines the following two approaches: 

 

Bottom-up: Generate subsets and go on to generating parent-set candidate 

sets using frequent subsets. 

 

Top-Down: Generating parent set and then generating subsets. 

 

It also uses two special properties: 

 

Downward Closure Property: If an itemset is frequent, then all its must be 

frequent. 

 

Upward Closure Property: If an itemset is infrequent, all its supersets must 

be infrequent. 

 

 It uses the above two properties for pruning candidate sets, hence decreases 

the computation time considerably.  

 

It uses both approaches for pruning in following way:  

 

If some maximal frequent itemset is found in the top down direction, then 

this itemset can be used to eliminate (possibly many) candidates in the 

bottom-up direction. The subsets of this frequent itemset will be frequent 

and hence can be pruned (acc. to Downward closure property). 

 

If an infrequent itemset is found in the bottom up direction, then this 

infrequent itemset can be used to eliminate the candidates found in top-down 

search found so far (acc. to Upward Closure Property). 

 

This two-way approach makes use of both the properties and speeds up the 

search for maximum frequent set. 

 

The algorithm begins with generating 1-itemsets as Apriori algorithm but 

uses top-down search to prune candidates produced in each pass. This is 

done with the help of MFCS set. 

 

 

 



Let MFS denote set of Maximal Frequent sets storing all maximally frequent 

itemsets found during the execution. So at anytime during the execution 

MFCS is a superset of MFS. Algorithm terminates when MFCS equals 

MFS. 

In each pass over database, in addition to counting support counts of 

candidates in bottom-up direction, the algorithm also counts supports of 

itemsets in MFCS: this set is adapted for top-down search.  

 Consider now some pass k, during which itemsets of size k are to be 

classified. If some itemset that is an element of MFCS, say X of cardinality 

greater than k is found to be frequent in this pass, then all its subsets will be 

frequent. Then all its subsets of cardinality k are pruned from the set of 

candidates considered in bottom-up approach in this pass. They and their 

supersets will never be candidates again. But, they are not forgotten and 

used in the end. 

 Similarly when a new itemsets is found to infrequent in bottom-up 

direction, the algorithm makes use of it to update MFCS, so that no subset of 

any itemset in MFCS should have this infrequent itemset as its subset. 

 By use of MFCS maximal frequent sets can be found early in 

execution and hence improve performance drastically. 

 

Note: In general, unlike the search in bottom-up direction, which goes up 

one level in one pass, the top down search can go down many levels in one 

pass. 

 

Now let’s see algorithmic representation of Pincer search so that we can see 

how above concepts are applied: 

 
Pincer Search Method 

 

L0 =  ; k=1; C1 = {{i} | i  I }; S0 =  

MFCS = {{ 1,2,, n}}; MFS =  ; 

 

do until Ck =  and Sk-1 =  

 read the database and count support for Ck & MFCS. 

MFS = MFS  {frequent itemsets in MFCS}; 

Sk = {infrequent itemsets in Ck }; 

 

call MFCS_gen algorithm if Sk  ; 

call MFS_pruning procedure; 

generate candidates Ck+1 from Ck ; 

if any frequent itemset in Ck is removed from MFS_pruning procedure 

call recovery procedure to recover candidates to Ck+1 . 



call MFCS_prune procedure to prune candidates in Ck+1 . 

k=k+1; 

return MFS 

 

MFCS_gen 

for all itemsets s  Sk  

 for all itemsets m  MFCS 

 if s is a subset of m 

 MFCS = MFCS \ {m} 

 for all items e  itemset s 

  if m \ {e} is not a subset of any itemset in MFCS 

  MFCS =  MFCS  {m \ {e}} 

return MFCS 

 

Recovery 

for all itemsets l  Lk  

 for all itemsets m  MFS 

  if the first k-1 items in l are also in m 

   for i from j+1 to |m| 

   Ck+1 = Ck+1  {{l.item1, , l.itemk, m.itemi}} 

 

MFS_prune 

for all itemsets c in Lk 

if c is a subset of any itemset in the current MFS 

delete c from Lk. 

 

MFCS_prune 

for all itemsets in Ck+1 

if c is not a subset of any itemset in the current MFCS 

delete c from Ck+1; 

 

MFCS is initialized to contain one itemset, which contains all of the 

database items. MFCS is updated whenever new infrequent itemsets are 

found. If an itemset is found to be frequent then its subsets will not 

participate in subsequent support counting and candidate generation steps. If 

some itemsets in Lk are removed, the algorithm will call the recovery 

procedure to recover missing candidates.  

 

 

 

 

 

 

 



Let’s apply this algorithm to the following example: 

Example :1 - Customer Basket Database 

 

Transaction                Products 

1 Burger, Coke, Juice 

2 Juice, Potato Chips 

3 Coke, Burger 

4 Juice, Groundnuts 

5 Coke, Groundnuts 
 

 

Step 1: L0 =  , k=1; 

 

 C1 = {{ Burger},  {Coke}, {Juice}, {Potato Chips}, {Ground Nuts}} 

 

MFCS = {Burger, Coke, Juice, Potato Chips, Ground Nuts} 

 

MFS =  ; 

 

 

Pass 1: Database is read to count support as follows: 

 

{Burger}2, {Coke}3, {Juice} 3, {Potato Chips}1, {Ground Nuts}2 

 

{Burger, Coke, Juice, Potato Chips, Ground Nuts}  0 

 

So MFCS = {Burger, Coke, Juice, Potato Chips, Ground Nuts} 

& MFS = ; 

 

L1 = {{Burger}, {Coke}, {Juice}, {Potato Chips}, {Ground Nuts}} 

S1 =  

 

At the moment since S1 =  we don’t need to update MFCS 

 

C2 = {{Burger, Coke}, {Burger, Juice}, {Burger, Potato Chips}, {Burger, Ground Nuts}, 

{Coke, Juice}, {Coke, Potato Chips}, {Coke, Ground Nuts}, {Juice, Potato Chips}, 

{Juice, Ground Nuts}, {Potato Chips, Ground Nuts}} 

 

Pass 2: Read database to count support of elements in C2 & MFCS as given below: 

 

{Burger, Coke}  2, {Burger, Juice}1, 

{Burger, Potato Chips}0, {Burger, Ground Nuts}0, 

{Coke, Juice}1, {Coke, Potato Chips}0, 

{Coke, Ground Nuts}1, {Juice, Potato Chips}1, 

{Juice, Ground Nuts}1, {Potato Chips, Ground Nuts}0 



 

{Burger, Coke, Juice, Potato Chips, Ground Nuts}0 

 

MFS =   

 

L2 = {{Burger, Coke}, {Burger, Juice}, {Coke, Juice}, {Coke, Ground Nuts}, {Juice, 

Ground Nuts}, {Juice, Potato Chips}} 

 

S2 = {{Burger, Potato Chips}, {Burger, Ground Nuts}, {Coke, Potato Chips}, {Potato 

Chips, Ground Nuts}} 

 

For {Burger, Potato Chips} in S2 and for {Burger, Coke, Juice, Potato Chips, Ground 

Nuts} in MFCS, we get new elements in MFCS as 

 

{Burger, Coke , Juice, Ground Nuts} and {Coke, Juice, Potato Chips, Ground Nuts} 

 

For {Burger, Ground Nuts} in S2 & for {Coke, Juice, Potato Chips, Ground Nuts} in 

MFCS, since {Burger, Ground Nuts} is not contained in this element of MFCS hence no 

action. 

 

For {Burger, Coke, Juice, Ground Nuts} in MFCS we get two new elements 

{Burger, Coke, Juice} & {Coke, Juice, Ground Nuts} 

Since {Coke, Juice, Ground Nuts} is already contained in MFCS, it is excluded from 

MFCS 

 

Now, MFCS = {{Burger, Coke, Juice}, {Coke, Juice, Potato Chips, Ground Nuts}} 

 

Now, for {Coke, Potato Chips} in S2 , we get  

 

MFCS = {{Burger, Coke, Juice}, {Coke, Juice, Ground Nuts}, {Potato Chips, Juice, 

Ground Nuts}} 

 

Now, for {Potato Chips, Ground Nuts} in S2, we get 

 

MFCS = {{Burger, Coke, Juice}, {Coke, Juice, Ground Nuts}, {Potato Chips, Juice}} 

 

Now, we generate candidate sets as  

C3 = {{Burger, Coke, Juice}, {Potato Chips}} 

 

Here algorithm stops since no more candidates need to be tested. 

 

Then we do one scan for calculating actual support counts of all maximally 

frequent itemsets and their subsets. Then we go on to generate rules using 

minimum confidence threshold to get all interesting rules. 

 
    x-------------x 
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